Counting RNA Pseudoknotted Structures
نویسندگان
چکیده
In 2004, Condon and coauthors gave a hierarchical classification of exact RNA structure prediction algorithms according to the generality of structure classes that they handle. We complete this classification by adding two recent prediction algorithms. More importantly, we precisely quantify the hierarchy by giving closed or asymptotic formulas for the theoretical number of structures of given size n in all the classes but one. This allows us to assess the tradeoff between the expressiveness and the computational complexity of RNA structure prediction algorithms.
منابع مشابه
Stochastic modeling of RNA pseudoknotted structures: a grammatical approach
MOTIVATION Modeling RNA pseudoknotted structures remains challenging. Methods have previously been developed to model RNA stem-loops successfully using stochastic context-free grammars (SCFG) adapted from computational linguistics; however, the additional complexity of pseudoknots has made modeling them more difficult. Formally a context-sensitive grammar is required, which would impose a large...
متن کاملAn Adaptive Defect Weighted Sampling Algorithm to Design Pseudoknotted RNA Secondary Structures
Computational design of RNA sequences that fold into targeted secondary structures has many applications in biomedicine, nanotechnology and synthetic biology. An RNA molecule is made of different types of secondary structure elements and an important RNA element named pseudoknot plays a key role in stabilizing the functional form of the molecule. However, due to the computational complexities a...
متن کاملPrediction of geometrically feasible three-dimensional structures of pseudoknotted RNA through free energy estimation.
Accurate free energy estimation is essential for RNA structure prediction. The widely used Turner's energy model works well for nested structures. For pseudoknotted RNAs, however, there is no effective rule for estimation of loop entropy and free energy. In this work we present a new free energy estimation method, termed the pseudoknot predictor in three-dimensional space (pk3D), which goes bey...
متن کاملMulti-Objective Genetic Algorithm for Pseudoknotted RNA Sequence Design
RNA inverse folding is a computational technology for designing RNA sequences which fold into a user-specified secondary structure. Although pseudoknots are functionally important motifs in RNA structures, less reports concerning the inverse folding of pseudoknotted RNAs have been done compared to those for pseudoknot-free RNA design. In this paper, we present a new version of our multi-objecti...
متن کاملA domain-based model for predicting large and complex pseudoknotted structures.
Pseudoknotted structures play important structural and functional roles in RNA cellular functions at the level of transcription, splicing and translation. However, the problem of computational prediction for large pseudoknotted folds remains. Here we develop a domain-based method for predicting complex and large pseudoknotted structures from RNA sequences. The model is based on the observation ...
متن کاملLinear Time Algorithm for Parsing RNA Secondary Structure
Accurate prediction of pseudoknotted RNA secondary structure is an important computational challenge. Typical prediction algorithms aim to find a structure with minimum free energy according to some thermodynamic (“sum of loop energies”) model that is implicit in the recurrences of the algorithm. However, a clear definition of what exactly are the loops and stems in pseudoknotted structures, an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of computational biology : a journal of computational molecular cell biology
دوره 18 10 شماره
صفحات -
تاریخ انتشار 2011